![]() ![]() |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Главная / Услуги / ГОСТы и СНиПы / СТО-СА-03-002-2009 Правила проектирования, изготовления и монтажа вертикальных цилиндрических стальных резервуаров для нефти и нефтепродуктов /
9. Расчет конструкций резервуара, часть 29.5 Допускаемые нагрузки на патрубки врезок в стенку резервуара9.5.1. Действие настоящего раздела распространяется на врезки с размерами, регламентированными в п. 8.6, и с условными диаметрами патрубка Dy, соответствующими области, выделенной на рис. 9.5. Рис. 9.5. Область допускаемых размеров патрубков Dy для раздела 9.59.5.2. Нагрузки на патрубок задаются в виде комбинаций трех усилий (рис. 9.6): радиальной силы вдоль оси патрубка FR* (кН), изгибающего момента в вертикальной плоскости ML* (кН·м), изгибающего момента в горизонтальной плоскости Мс* (кН·м). На рис. 9.6 показаны положительные направления усилий. Рис. 9.6. Нагрузки на патрубок врезки в стенку резервуара9.5.3. Допускаемыми являются такие комбинации нагрузок, которые обеспечивают несущую способность сварных швов по предельным состояниям, то есть попадают внутрь области допускаемых нагрузок, полученной в результате расчета на конечно-элементной модели, включающей стенку, окрайку днища, патрубок, усиливающий лист и все швы в зоне врезки. Моделирование осуществлялось с применением трехмерных конечных элементов и обеспечивало многослойную разбивку по толщине стенки, патрубка и сварных швов. Методика получения границы области допускаемых нагрузок приведена в п. 9.5.4. Рис. 9.7. Область допускаемых нагрузок на патрубки9.5.4. Размеры области допускаемых нагрузок (рис. 9.7) определяются по формулам: Здесь значения коэффициентов γс, γt, γp1, γp2, определяются соответственно в пп. 9.1.3, 9.1.4, 9.5.7, 9.5.8; МC0 - максимально допускаемая величина момента МC* при FR* = ML* = 0. 9.5.5. Параметр λ вычисляется в зависимости от величины момента МC* по формуле: 9.5.6. Безразмерные коэффициенты е1i-е3i зависящие от условной высоты налива Н* и условного прохода патрубка Dy приведены в таблице 9.6. Таблица 9.6
Величина Н*, используемая в таблице 9.6, определяется по формуле: но не более 24 м. Здесь t - назначенная в проекте толщина нижнего пояса резервуара, величина R определяется в п. 9.2.2.3 для режима эксплуатации. 9.5.7. Если предусмотрена термообработка узла врезки, то в формулах 9.5.4 следует принять γp1 = l, в противном случае γp1 = 0,95. 9.5.8. Для учета циклического характера приложения нагрузок используется коэффициент γp2, который зависит от условного количества циклов налива (слива) продукта nс и определяется следующим соотношением: причем, если γp2 > 1, следует принять γp2 = 1. В представленной формуле параметры B1 и В2, измеряемые в МПа, назначаются по таблице 9.7, соответствующей ГОСТ Р 52857.6-2007. Таблица 9.7
В таблице 9.7 Rm/t - временное сопротивление стали при расчетной температуре Т, принимаемое по ГОСТ Р 52857.1-2007. Единичным наливом (сливом) продукта следует считать технологическую операцию, при которой уровень налива (слива) изменяется не менее чем на 0,5 Н. 9.5.9. Комбинация фактических нагрузок на патрубок FR*, ML*, MC* является допускаемой, если точка с координатами FR*, ML*, построенная на графике рис. 9.7, располагается внутри многоугольника. 9.5.10. Комбинация фактических нагрузок на патрубок FR*, ML*, MC* является недопускаемой при выполнении любого из условий: - точка с координатами FR*, Ml*, построенная на графике рис. 9.7, располагается снаружи многоугольника; - многоугольник на рис. 9.7 вырождается в точку (a1 = а2 = a3 = a4 = 0). 9.5.11. Допускаемые нагрузки на патрубки с величиной Dy, отличающейся от приведенной в таблице 9.6, могут быть получены интерполяцией. 9.5.12. Возможны два варианта применения методики расчета по пунктам 9.5.4-9.5.11. Первый вариант предполагает проверку несущей способности врезки на действие заданных комбинаций фактических нагрузок FR*, ML*, МC*. Второй вариант позволяет получить область допускаемых значений для последующей проверки любых комбинаций нагрузок. В этом случае, предварительно задается набор значений момента МC* в интервале от 0 до МC0, а затем для каждого из этих значений вычисляются границы области, изображенной на рис. 9.7. Полученный набор многоугольников и представляет область допускаемых значений нагрузок на патрубок. 9.5.13. Для врезок с параметрами, выходящими за пределы указанной в п. 9.5.1 области, допускаемые нагрузки определяются конечно-элементным расчетом на модели, указанной в п. 9.5.3. Критерием несущей способности врезки является условие: ε ≤ εp, то есть максимальная деформация сварного шва ε не должна превышать предельно допустимую деформацию этого шва εp. Деформация сварного шва определяется как удлинение (укорочение) любой из сторон поперечного сечения сварного шва, отнесенное к ее недеформированному размеру. Предельно допустимая деформация шва вычисляется по формуле: εp = γcγtγp1γp2Ry/E. 9.5.14. Примеры расчета допускаемых нагрузок на патрубок приведены в Приложении П.18. 9.6. Расчет сейсмостойких резервуаров9.6.1. Общие положения9.6.1.1. Настоящий раздел содержит требования к расчету и проектированию вертикальных цилиндрических стальных резервуаров, эксплуатация которых предусматривается в районах с сейсмичностью выше 6 баллов по шкале MSK-64. Для районов с сейсмичностью 6 баллов и ниже сейсмические нагрузки учитывать не требуется. 9.6.1.2. Полная нагрузка со стороны продукта на стенку и днище резервуара в условиях землетрясения включает: - гидростатическую нагрузку и нагрузку от действия избыточного давления; - импульсивную (инерционную) составляющую гидродинамического давления; - конвективную (кинематическую) составляющую гидродинамического давления; - составляющую сейсмической нагрузки от вертикальных колебаний грунта. Импульсивная составляющая давления возникает от части продукта, движущегося в условиях землетрясения совместно со стенкой резервуара. Колебания жидкости внутри резервуара создают конвективное давление и приводят к появлению волн на поверхности продукта. Вертикальные колебания основания резервуара также индуцируют дополнительную нагрузку на его стенку. 9.6.1.3. Сочетания перечисленных нагрузок, а также нагрузок от веса металлоконструкций, оборудования, теплоизоляции и снега (при наличии стационарной крыши) следует производить с учетом коэффициентов сочетаний нагрузок, определяемых в соответствии со СНиП 2.01.07-85*, СНиП II-7-81*. 9.6.1.4. Проверка сейсмостойкости резервуара предусматривает комплекс расчетов, последовательность которых приведена на рис 9.8. Рис. 9.8. Последовательность расчетов сейсмостойкости резервуараПри этом проверка резервуара на сдвиг при землетрясении до 9 баллов включительно не требуется. 9.6.1.5. Сейсмостойкость резервуара следует считать обеспеченной при одновременном выполнении следующих условий: а) резервуар не опрокидывается при землетрясении (критерием опрокидывания является предельное состояние, при котором на внешнем радиусе приподнятой части днища возникает полный пластический шарнир, рис. 9.9); Рис. 9.9. Расчетная схема резервуара в условиях землетрясенияб) обеспечена устойчивость нижнего пояса стенки от действия продольно-поперечной нагрузки; в) обеспечены условия прочности для всех несущих элементов резервуара. 9.6.1.6. Если условия 9.6.1.5а или 9.6.1.5б не выполняются, требуется установка анкеров, количество и размеры которых определяются расчетом. 9.6.2. Параметры сейсмического воздействия9.6.2.1. Параметры сейсмического воздействия выдаются Заказчиком на основе данных сейсмического микрорайонирования площадки строительства. В районах, для которых отсутствуют карты сейсмического микрорайонирования, допускается использовать комплект карт общего сейсмического районирования территории Российской Федерации ОСР-97, или СНиП II-7-81*. 9.6.2.2. Задание на проектирование должно включать следующие параметры сейсмического воздействия: - сейсмичность площадки строительства (баллы по шкале MSK-64); - категория грунта по сейсмическим свойствам (таблица 1* СНиП II-7-81); - коэффициент вертикального сейсмического ускорения Av. 9.6.2.3. Коэффициент горизонтального сейсмического ускорения составляет Аh = 0,1, 0,2, 0,4 при землетрясении интенсивностью 7, 8, 9 баллов соответственно. Для грунтов категорий сейсмичности I или III параметр Ah задается по таблице 1* СНиП II-7-81. 9.6.2.4. Коэффициент вертикального сейсмического ускорения назначается на основе данных сейсмического микрорайонирования. Если данные отсутствуют, допускается принимать Av = 0,5Ah. 9.6.2.5. В разделе 9.6 принята система безразмерных коэффициентов, представленная в таблицах 9.8, 9.9. Таблица 9.8
Таблица 9.9
9.6.3. Расчетные нагрузкиРасчет всех компонент сейсмических нагрузок производится на основе спектрального метода с учетом коэффициентов динамичности и демпфирования, соответствующих основному тону колебаний резервуара и продукта. 9.6.3.1. Опрокидывающий момент определяется по формуле: где 9.6.3.2. Допускается уменьшение значения коэффициента βi, приведенного в таблице 9.8, если период основного тона импульсивных колебаний продукта получен расчетным путем и использованы соответствующие формулы п. 2.6* СНиП II-7-81*. 9.6.3.3. Нагрузки от продукта, действующие на стенку и днище резервуара, определяются по формулам: где 9.6.3.4. Период основного тона конвективных колебаний продукта определяется соотношением: 9.6.3.5. Коэффициент динамичности для конвективных колебаний продукта βс определяется в зависимости от периода Тс следующим образом: а) по формулам п. 2.6* СНиП II-7-81*, если 0 ≤ Тс ≤ Т0 = 2 с; б) βс = (Т0/Тс)2 β0, если Тc > Т0, где β0 = β(Т0) - значение коэффициента динамичности, полученное по формулам п. 2.6* СНиП II-7-81* на границе области низкочастотных сейсмических колебаний продукта при Т0 = 2 с. 9.6.4. Проверка сейсмостойкости резервуара9.6.4.1. Резервуар является устойчивым к опрокидыванию, если момент от вертикальных удерживающих сил превышает момент от инерционных горизонтальных сил. 9.6.4.2. Опрокидывание резервуара не происходит, если выполняется неравенство: где tb, Δtcb, Δtmb - соответственно толщина, припуск на коррозию и минусовой допуск на прокат окраечных (если предусмотрено - кольцевых) листов днища. 9.6.4.3. Устойчивость стенки проверяется от действия продольно-поперечной нагрузки, вызывающей ее изгиб и вертикальное сжатие в процессе опрокидывания резервуара с продуктом. За предельное состояние принимается фибровая текучесть стенки (с учетом коэффициентов γс и γn), проверяемая в вертикальном сечении оболочки. Несущая способность нижнего пояса стенки с расчетным сопротивлением по пределу текучести R1y и номинальной толщиной нижнего пояса t1 обеспечена, если выполняется условие: в котором расчетные нагрузки по контуру стенки в основании резервуара qmax вычисляются в п. 9.6.6.1, а допускаемые сжимающие напряжения в этом поясе определяются выражением: где 9.6.4.4. В случае нарушения требований п.п. 9.6.4.2, 9.6.4.3, следует выполнить одно из следующих мероприятий или их комбинацию: а) увеличить толщину окраечного листа днища; б) увеличить толщину первого пояса стенки t1; в) путем изменения размеров резервуара уменьшить величину отношения H/D; г) применить анкеры, которые назначаются в соответствии с указаниями п. 9.6.7. 9.6.4.5. Толщины каждого i-гo пояса стенки ti определяются из условия прочности по кольцевым усилиям цилиндрической оболочки. С учетом сейсмических нагрузок p0(z,φ), действующих на стенку в точке с координатами zi = H - Hi, φ = 0, имеем: где Riy - расчетное сопротивление по пределу текучести i-гo пояса стенки. 9.6.5. Максимальные вертикальные усилия сжатия в стенке резервуара9.6.5.1. Вертикальные сжимающие усилия в стенке определяются с учетом возможного отрыва части днища от основания. При вычислении удерживающих сил учитывается вес продукта, расположенного над приподнятым участком днища. 9.6.5.2. Максимальные вертикальные усилия сжатия в нижнем поясе стенки резервуара следует определять по формулам: 9.6.6. Нагрузки на основание и фундамент и размеры окрайки днища в условиях сейсмического воздействия9.6.6.1. Вертикальные расчетные нагрузки, действующие по контуру стенки резервуара в процессе землетрясения, вычисляются по формулам: а) если требуется установка анкеров б) если анкеры не требуются 9.6.6.2. Максимальная и минимальная вертикальные расчетные нагрузки на основание под центральной частью днища резервуара в процессе землетрясения вычисляются по формуле: где знаки плюс и минус соответствуют максимальному и минимальному значению давления в диаметрально противоположных точках днища, расположенных по оси сейсмического воздействия. 9.6.6.3. Горизонтальная сдвигающая сила, передаваемая от резервуара на фундамент при землетрясении, вычисляется по формуле: где 9.6.6.4. Минимальная требуемая ширина окрайки днища в процессе землетрясения (рис. 9.9) определяется соотношением: Окончательно ширина окрайки днища назначается как большая из величин, полученных по формулам п. 8.3.6 и п. 9.6.6.4. 9.6.7. Требования к установке анкеров9.6.7.1. Если требуется установка анкеров (см. п. 9.6.4.4 г), то расчетное усилие в одном анкерном болте определяется по формуле: Na = (1,2 pπr2 + 4Ms/Da - Gs* - Gr*)/na, причем значения весовых характеристик Gs*, Gr* принимаются за вычетом веса откорродировавшего металла и без учета снеговой нагрузки. 9.6.7.2. Количество анкерных болтов, устанавливаемых по периметру резервуара, определяется конструктивно. При этом минимальная расчетная площадь поперечного сечения нетто анкерного болта составляет: Aba = Na/Rba, где расчетное сопротивление анкерных болтов Rba назначается на основе требований раздела 3 СНиП II-23-81*. Номинальный диаметр резьбы болта следует принимать в соответствии с ГОСТ 24379.0. 9.6.7.3. Назначение размеров конструктивных элементов анкерных стульчиков следует производить в соответствии с требованиями СНиП II-23-81*. Запас прочности конструктивных элементов анкерного стульчика должен быть выше запаса прочности анкерного болта. 9.6.8. Максимальный уровень наполнения резервуара9.6.8.1. Высота волны на поверхности продукта определяется по формуле: dmax = 0,84βcrAh. 9.6.8.2. Максимальный уровень наполнения резервуара Н должен назначаться с учетом высоты волны на поверхности продукта в процессе землетрясения. При этом следует обеспечить выполнение условия: Н + ΔН + dmax < Нs. 9.6.9. Пример расчетаВ Приложении П.7 содержится пример расчета резервуара объемом 2000 м3. 9.7. Защита резервуаров от стихийного воздействия водного потокаДля резервуаров, возводимых в прибрежных зонах рек, морей и океанов, существует опасность воздействия водных потоков, вызванных паводковыми разливами рек, прорывом плотин и дамб, цунами, нагоном воды из морей в устья рек и т.д. При этом возможны сдвиг и опрокидывание резервуаров, расположенных в зонах затопления. Приложение П.8 содержит рекомендации по защите резервуаров от указанного вида стихийного воздействия и включает комплекс мероприятий, проведение которых целесообразно на стадии проектирования и в процессе эксплуатации резервуаров. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |